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ABSTRACT

A system of binary linear constraints or difference constraints (SDC)
contains a set of variables that are constrained by a set of unary or
binary linear inequalities. In such diverse applications as schedul-
ing, interface timing verification, real-time systems, multimedia
systems, layout compaction, and constraint satisfaction, SDCs have
successfully been used to model systems of both lemporal and spa-
tial constraints. Formally, SDCs are modeled by weighted, directed
(constraint) graphs. The consistency of an SDC means that there is
at least one instantiation of its variables that satisfies all its con-
straints. It is well known that the absence of positive cycles in a
graph implies the consistency of the comesponding SDC, so the
consistency can be decided in strongly polynomial time. If a SDC
is found to be inconsistent, it has to be repaired to make it con-
sistent. This task is equivalent to removing positive cycles from
the corresponding graph. All the previous algorithms for this task
take time proportional to the number of positive cycles in the graph,
which can grow exponentiaily. In this paper, we propose a strongly
polynomial-time algorithrn, i.e., an algorithm whose time complex-
ity is polynomial in the size of the graph. Qur algorithm takes in a
graph and returns a list of edges and the changes in their weights to
remove all the positive cycles from the graph. We experimentally
quantify the length of the edge list and the running time of the al-
gorithm on large benchmark graphs. We show that both are very
small, so our algorithm is practical.

Keywords )
Behavioral synthesis, high-level synthesis, scheduling, timing con-
straints, rate analysis, constraint satisfaction.

1. INTRODUCTION

A special case of the general linear-programming problem is the
systemn of difference constraints (SDC). In such a system, each con-
straint is a binary linear inequality defined over two variables. As
such, this type of a system is mapped 1o a weighted, directed graph

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, lo post on servers or 1o redistribute to lists,
requires prior specific permission and/or a fee.

CODES'02, May 6-8, 2002, Fstes Park, Colorado, USA,

Copyright 2002 ACM 1-58113-542-4/02/0005...$5.00.

(called a constraint graph) where vertices correspond to the vari-
ables and the edges correspond to the constrajnts. A solution 10 a
given SDC means finding an instantiation of the variables that sat-
isfies all the constrainis. If at least one solution exists, the SDC is
consistent; otherwise, it is inconsistent. 1f the SDC is inconsistent,
it is also said to be over-constrained.

Once the constraint graph for an SDC is constructed in a certain
way, it can be shown that the inconsistency of an SDC is tied1o”
the presence of positive cycles in the graph. Thus, a simple single-
source longesi-paths algorithm is all that it takes to verify the in-
consistency of the SDC. However, if a solution is needed, the SDC
has to be repaired, or the inconsistency has to be resclved. Sim-
ply. converting every positive cycle in the graph to a zero cycle will
make the SDC consistent. One way or another, most of the ap-
proaches in the literature are based on this intwition. The problem
here is, of course, that the graph can have an exponential num-
ber of positive cycles, resulting in exponential time algorithms to
gain consistency. The main contribution of this paper is to propose
an intelligent algorithm that not only restores consistency correctly
(by outputting a list of edges whose weights have to be changed)
but also performs this task in time that is a polynomial function of
the number of vertices and the numnber of edges in the input graph,
resulting in a strongly polynomial-time algorithm.

The reason why we should care about such an algorithm is the
wide applicability of SDCs. Below we list only a few applications
without being exhaustive:

e scheduling, e.g., operation scheduling in behavioral synthe-
sis {20, 23, 28, 32], software scheduling [8. 22], job / task
scheduling {91, or data-flow scheduling [31];

interface timing verification [3, 4];

rate analysis 10, 25];

real-time systems, e.g., real-time scheduling [27], run-time
monitoring liming constraints [29), or safety analysis of real-
time systems [18]:

« modeling most of the temporal, spatial, and quality-of-service
requirements for collaborative multimedia systems [5];

s layout compaction [14, 17, 19, 21, 26, 30]: and
« constraint satisfaction problems [13].

Note that the constraints in an SDC can be used to model tem-
poral, spatial, and possibly other kinds of constraints as long as
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backward

Figure 1: Modeling a minimum censtraints X; — X; > / with
a forward edge and a maximum constraint ¢ > X; — X; with a
backward edges.

they result in unary or binary linear inequalities. For example, for
scheduling, all the constraints are timing constraints (derived from
data / control flow ordering and user constraints) whereas for lay-
out compaction, all the constraints are spatial constraints (derived
from technology design rules and user constraints). Our interest in
this paper is on timing constraints.

2. PROBLEM FORMULATION

We now present the formal definition of an SBC (§ 2.1), the
modeling it using a constraint graph (§ 2.2), the correspondence
between the inconsistency of the system and the presence of pos-
itive cycles in the constraint graph (§ 2.3), the problem of resolv-
ing inconsistency (§ 2.4), and a list of previous approaches to this
problem (§ 2.4). The section is largely based on the references
mentioned in the introduction section.

2.1 Systems of Difference Constraints

Definition 1. A system of difference constraints (SDC) consists
of n unknowns (or variables) X;,X>,...,X, and m difference con-
straints, in which each difference constraint is a binary linear in-
equality of the (canonical) form X; — X; > by, where 1l S, j<n,
1 € k< m, and by, are constants.

Definition 2. Given an SDC with n variables and m constraints,
an a-tuple x = (Xy,x3,...,X,) 15 a (feasible) solurion if the assign-
ment (or instantiation) {X1 = x1,Xa = x2,..., X, = Xa } sarisfies all
the constraints. Each constraini that is not satisfied is said to be vi-
olared. The system is consistent if at least one solution exists, and
is inconsistent otherwise.

2.2 Moedeling Using Constraint Graphs

Definition 3. Given an SDC with n variables and m constraints,
the corresponding constraint grapkh is a weighted, directed graph
G = (V,E,w) with {V] = (n+ 1) vertices, |[E| = (m+n) edges, and
an edge weight function w, in which V = {Xp. Xy,...,Xs} and £ =
{6 X)) o w{Xi X ) = b YU {(Xo, X} s wiXo, X;) =0} for 1 < j <
n. Every constraim of the form X; — X; > by is converted to an edge
(X;,X;) with weight w(X;, X;) = by.

Note that G contains a vertex for each variable and an extra ver-
tex Xg, which is the reference or source vertex and is connected 10
every other vertex via zero{-weighted) edges. (An edge or a cycle
is positive, negative, or zero based on the sign of its weight). For
simplicity, we assign zero 10 X in any solution.

We will use the notations SDC[G} and G[SDC] to denote the SDC
corresponding to G and vice versa, respectively. An SDC as mod-
eled by a constraint graph is general enough to model any unary

and binary linear constraints, which ¢an contain either < or >. That
is, any such constraint can be converted to the canonical form, as
shown in the following examples for two variables X; and X;;:

e X; >3 Xi—Xo>5;

* X; <58 X-X;> -5

s X;—X; <5< Xi~X; > -5 and

e Xj—Xi=5&X;-X;25and X; - X; > 5.

Therefore, without loss of generality, we will consider binary con-
straints in the canonical form.

Definition 4. Consider an SDC and G[$DC). A constraint of the
form X; — X; > by is called a minimum constraint as it provides a
lower bound by, for the difference X; — X;. The corresponding edge
(X;,X;) with weight by is called a forward edge. A constraint of the
form X; — X; < by is called 2 maximusm constraint as it provides a
upper bound by, for the difference X; — X;. This constraint is equiv-
alent 10 X; —~ X; > —by in the canonical form. The corresponding
edge {X;,X;) with weight —by is called a backward edge.

Fig. 1 depicts modeling binary constraints with forward and back-
ward edges.

2.3 Characterizing Consistency Using Positive
Cycles

THEOREM |. (e.g., 9]} Consider an SDC and G[SDC) = (V,E,w).

Then, G is consistent if and only if G contains no positive cycles.
Furthermore, if G is consistent, then

x= (Ovd{xﬂwxl)w-"vd(xoyxﬂ)) n

is a solution where d(Xq.X;} is the length of the longest path from
Xo 10 X; for § <1< n. This solurion is also the smallest one in that
it minimizes X; — Xy for each X;.

If we reverse every edge in G and negate their weights, then the
consistency of SDC[G] is guaranteed in the absence of any nega-
tive cycles {9]. Thus, without loss of generality, we will deal with
positive cycles. -

To detect the presence of positive cycles and find a solution in
their absence, we can use a single-source jongest-path algorithm. In
theory, the fastest time bound for such algorithms is O{nm), which
is achieved by the well-known Bellman-Ford algorithm. In prac-
tice, faster algorithms exist [7]. Especially, if it is more likely that
G will have a positive cycle, even faster algorithms, e.g.. Tarjan’s
algorithm, exist [6]. One algorithm that is not reported in [6, 7] is
the Liao-Wong algorithm [21]. Its time complexity is O{{b+ 1)m)
where & = O(n]) is the number of the backward edges in G. As
such, this algorithm can be more suitable if b is small.

Now that we know how to find a solution when SDC[G] is con-
sistent, we next focus on resolving inconsistency when SDC|G] is
inconsistent.

2.4 Dealing With Inconsistency and Previous
Work

To simplify our discussion, we assume the following scenario.
Suppose 2 designer has a problem in one of the applications men-
tioned in the introduction. S/he maps the problem to an SDC, and
uses a software tool to check its consistency. The tool internally
converts the input SDC to a constraint graph and checks for posi-
tive cycles 1o decide the consistency (by Theorem 1). If no positive
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cycles are found, the tool reports “success”. If the graph has posi-
tive cycles, the tool reports “failure” but also tries 1o remove them
by either (1) changing the topology of the graph, or (2) changing
the edge weights, or (3) both. This paper focuses on (2) because it
seems “gasier”. Thus, we assume that the toc] will report a list of
edges together with the needed weight changes for each edge.

By changing the edge weights, the positive cycles can be con-
verted to either (1) zero cycle, or (2) negative cycles. Without loss
of generality, we have chosen (1). Since the designer will be more
satisfied if the edge list is minimized, we want to solve the follow-
ing problem.

PROBLEM |. (POSITIVE CYCLES PROBLEM) Given G as in
Def. 3, find the minimum number edges whose weights must be
changed to make G free of positive cycles.

The solution of this problem depends on the solutior of a mere
specialized problem called the feedback arc set (FAS) problem.

PROBLEM 2. (FEEDBACKARC SET PROBLEM) Givenan un-
weighted, directed graph G, find the minimum number of edges (or
arcs) whose removal makes G acyelic.

Since the FAS problem is NP-hard [16], Prob. 1, being its gen-
eralization, is also NP-hard. Due to this unfortunate difficulty, we
relax Prob. 1 and opt for a best-effort approach.

PROBLEM 3. (BEST-EFFORT POSITIVE CYCLES PROBLEM)
Given G as in Def. 3, find a “small” set of edges whose weights
must be changed 1o make G free of positive cycles.

Prob. 3 is our main problem in this paper. The chief difficulty
of this problem stems from the number p of positive cycles in
&, which can be exponential in n. Not surprisingly, the previous
approaches and our approach propose ways of dealing with this
difficulty. All the previous approaches can be classified into two
main groups: (1) “resolve-all” approaches and (2) “resolve-some”
approaches. For simplicity, assume that each approach is imple-
mented in the 1ool mentioned in the first paragraph.

Resolve-ail approaches [10, 21, 31] offer the designer an edge
list that remaoves ail of the positive cycles from G. These approaches
first find all the simple cycles {those that do not contain other cy-
cles) using one of the algorithms in [24], and then visit and resolve
each positive cycle. The total worst-case time complexity is expo-
nential (O(p(n+m))}.

Resolve-some approaches (4, 8, 14, 17, 20] offer the designer
an edge list that removes some of the positive cycles from G. The
edge list is found in polynomial ume. The designer is expected to
reschve the oniput positive cycles and rerun the tool until the consis-
tency is achieved. Therefore, the total worst-case time complexity
is proportional 1o p, i.e., exponential. These approaches have the
variations as listed befow.

1. “Output” vasiation [4, 8, 20} finds one positive cycle in O{nm)
time and just outputs it.

2. "Backward edge™ variation [17] first removes all the back-
ward edges from G and repeats the following two sleps until
all the backward edges are eliminated: (1) temporarily add
one backward edge back to & and check for a positive cycle;
(2) if a positive cycle is found, output the ¢ycie and eliminate
the backward edge from further consideration. This variation
runs in O{brim) time for b backward edges.

3. “Freeze" variation {14] repeats the foliowing two steps: (1)
find one positive cycle in O(nm) time: (2) “freezes™ it, ie..
collapses it into one vertex. This variation runs in (O((m ~
n+ 1)nm)) time.

Cwr approach can also be considered as a resolve-all approach:
however, we do not enumerate every positive cycle in G. In the
previous resolve-all approaches, the positive cycles to resolve are
selected arbitrarily. in the next section, we show that making the se-
lection in a certain way implicitly resolves many other positive cy-
cles such that the total worst-case time complexity becomes strongly
polynomial in the size of G.

3. OUR ALGORITHM: FIX

We now present the cycle means (§ 3.1), the graph property that
our algorithm is based on, the characterization of the presence of
positive cycles using cycle means (§ 3.2), and our algorithm (§ 3.2)
together with its correctness (§ 3.3) and ranning time proofs (§ 3.4).
This section contains the main contribution of this paper. Without
loss of generality, we assume that G is cyclic.

3.1 Cycle Means

Definition 5. The (cycle) mean A(C) of acycle Cin G is defined
as
w(C) _ Zeecwle)

AC) = W = ——lc—’—“a 2)

where |C| is the length of C, i.e., the number of edges on it.

Note that (1) the mean of a cycle gives its average edge weight,
and (2) the maximum cycle mean in G is well defined since G has
a finite number of cycles.

Definition 6. The maximum cycle mean X*(G) of G is defined
as

¥(6) = max {MC)) &

A cycle whose mean is equal to the maximum cycle mean is called
a critical cycle.

The maximum cycle mean of G can found in O{rm) time, e.g.,
see a list of the possible algorithms in [12]. In practice, we have
found out and reported in [11] that the Young-Tarjan-Orlin algo-
rithm (YTO) [33] is one of the fastest maximum cycle mean al-
gorithms. Iis time complexity is O{nm + r*lgn) using Fibonacci
heaps, but these heaps are not efficient in practice. For cur experi-
ments, we used an efficient implementation using binary heaps al-

though it resulted in a higher worst-case time complexity of O{nmlgn).

3.2 Finding Positive Cycles Using Cycle Means
in FIX

The following result gives another characterization of inconsis-
tency and easily follows from Def. 5. It enables us to use a maxi-
murm cycle mean algorithm to resolve positive cycles.

THEOREM 2. A cyclic graph G has at least one positive cycle
ifand only if ,*(G) > 0.

Given G as an input, YTO computes A* {G) as well as retums one
of the positive cycles that is critical. Using YTO as a subroutine,
we get the algorithm FIX in Fig. 2 to restore consistency to SDC[G}.
FIX iterates until A' (G) < 0, which, by Theorem 2. implies tha1 G
no loniger has any positive cycles. At each ileration, we go over
the positive edges of C and change one or more edge weights to
make C 2 zero cycle. We ensure that non-negative edge weighis
stay non-negative during these weight changes.

Note that lines 5-7 of FIX can easily be replaced to use any other
heuristics (¢.g., based on “priority” or “criticality” of the edges).
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FIX(G)
1. Empty the edge list L.
2. repeat
(A*(G),C) = YTO(G).
if (A" (G) > 0) then
Select one or more positive edges on C.

bl o

Add the edges to L.
8. until {(A*(G) <0).
9. return L.

Figure 2: Our algerithm FIX to resolve the inconsistency in
SDC[G]. FIX uses the Young-Tarjan-Orlin algorithm (Y TO) as
a subroutine to find critical cycles.

or to simulate any resolve-some approaches. However, to guaran-
tee the polynomial-time complexity of FIX, any of these heuristics
must not increase any edge weight, i.e., they must not create new
positive cycles.

The output of FIX is an edge list L. At each iteration of FIX, the
edges whose weights have 1o be changed are added to L. The goal
is to make the length |L| of L as small as possible. This goal may
be realized in many ways, .2., by associating counters with edges.

3.3 Correctness of FIX

We first prove the following simple lemma, which states that FIX
does not create any new positive cycles. The proofs in the sequel
assume the correctiness of YTO, e.g., see [33] for a proof.

LEMMA 1. Arline 6 of FIX, zeroing w(C) decreases the weight
of every other cycle that shares an edge with C.

PrOOF. We have to show that any non-positive cycle stays as
non-positive after making w(C) zero. The proof is by contradiction.
Let €' be a non-positive cycle, i.e., w(C') < 0. Suppose C and '
share 2 number of edges. By line 5, w{C’) can change only if one
or more of these edges have positive weights. Assume that the total
change in their weights is 8w > 0. Then, if w(C') — 8w > 0 after
line 6, we must have w{C’') > dw > 0, which is a contradiction. O

‘We now prove that FIX is correct.

THEOREM 3. FIX makes G free of positive cycles in finite time.

PrROOE. Consider an iteration of FIX. By the correctness of YTO,
C of line § is a positive cycle. By Lemma 1, FIX does not create
new positive cycles. Also, F1X decreases the number of positive cy-
cles at least by one. Since G has a finite number of positive cycles,
FIX resolves all the positive cycles in finite time.

3.4 Time Complexity Analysis of FIX

By Theorem 3, FIX takes finite time. We now show that FIX with
aslight modification at line 5 is actually a strongly polynomial-time
algorithm, i.e., its time complexity is a polynomial function of n
and m. The modification is that FIX selects only one edge at line 5.
We first prove the following simple but important lemma.

LEMMA 2. Ler e be the edge selected at line 5. At line 6 of FIX,
zeroing w(C) makes every other positive cycle C' on e non-positive
Fic < ich

Decrease the sum of their weights by w(C}, i.e., zero w{C).

PROOF. First, by the correctness of YTO, C of line 5 is a posi-
tive cycle that is critical. Thus, by Eq. 2, we must have

we) , wE) .
a2 e @

Second. since w(e) is decreased by w{C)} at line 6, the weight of
¢’ after line 6 becomes w{C') — w(C). )

Now, assurne that C’ was a positive cycle before Line 6 and JC'} <
|Cl. Then, Eq. 4 implies that w(C) > w(C'). or 0 > w(C") — w(C}.
Thus, C’' becomes non-posilive after line 6. [

We are now ready to prove the main theorem of this paper.

THEOREM 4. The loop of lines 2-8 in FIX iterates at most nm
times.

PrOOF. During its execution, FIX resolves positive cycles of
different Jengths; however, since these cycles are simple cycles
without Joss of generality, these lengths range from i to n. Thus,
the worst-case time complexity of FIX occurs when the length of
C of line 5 monotonically increase from 1 to n during the iterations
of FIX. Now, we have to find out how many iterations are required
to resclve all the positive cycles of a given length, say k, I <k <n.

Let N denote all the positive cycles of length & in G. For each
edge e in G, let Ni(e) denote those cycles in Ny that contain e as one
of their edges. On the one hand, by Lemma 2, resolving a critical
cycle in Ni(e) for some edge e (at line 5-6) resolves every other
cycle in Ng(e). On the other hand, N, < 3. N (e). Therefore,
to resolve all the cycles in M, each edge e needs to be selected az
most once, or FIX needs to iterate at most m times. Since k ranges
from 1 to &, the total number of iterations of FIX is at most nm. [

CORGLLARY 1. The time complexity of FIXon G is O{nmT (r,m))
where T(n,m) is the time complexiry of computing the maximum cy-
cle mean of G, which is currently O(nm). In particular, FIX with
YTO runs in Q(nm(nm+n*lgn)) time with Fibonacci heaps and in
O{nm(nmlgn)) time with binary heaps.

In [33], it is shown that YTO runs in Q{m +nlga) time on the
average (for random graphs). In [11], we validated this claim for
both random graphs and circuits. Therefore, the average time com-
plexity of F1X is at least a factor of n less than its worst-case time
complexity.

4. EXPERIMENTAL RESULTS

We now present our experimental seup and test suite (§ 4.1), and
the experimental results (§ 4.2).

4.1 Experimental Setup and Test Suite

We wrote all our programs in C++ and built them using the GNU
g++ compiler (version 2.95.2). We performed all the experiments
on one CPU of an 8-CPU SUN workstation computer running the
UNIX operating system (SunOS version 5.7). Each CPU was a 336
MHz UltraSPARC-H processor. This processor has a 16 KB in-
struction cache and a 16 KB data cache, both of which seem small.
The computer had 7.2 gigabytes of main memory, which was more
than enough for our experiments to fit in main memory.

Instead of reporting the total running time, we report the running
time of the part of the program that takes in a graph that is already
in the main memory and produces its output. To give an idea about
the total running time, we note that the time to read the largest
graph in our test suite and prepare it as an input 100k less than 10 s.
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Table 1: Our test suite (the first three columns) and the experimental results for the algorithms DFS, FAS, POS-CYCLE, and FIX.
Here, n denotes the number of vertices, m the number of edges, |Z| the length of the edge list returned (i.e., the solution quality), B
the bound on the solution quality of FAS, T the running time in seconds, and .. the number of positive edges in the input graphs of

POS-CYCLE and FIX.

Test DFS FAS POS-CYCLE FIX
Name n m 1] T i3] ] Tl T IL| n_ T

01 12,752 [ 36,681 €2Z7 | 0Ol | 3300 | 14636 | 003 | 33 031 [ 35 3694 | 093
02 | 19.600 | 61829 || 9287 | 0.03 | 6140 | 25101 | 007 7| on 7T 1665 ] 025

03 | 23,136 | 66429 || 8334 [ 004 | 7263 1 29,068 | 0.09 g | 022 3| 2147 | 03

[ 0% | 27507 | 74138 || 10,305 | 004 | 6.600 | 32266 | 0.11 3 [ 020 § | 1.284 | 033
05 | 20347 § 98793 || 487) [ 0.02 | 5350 | 13730 | 005 2| 005 2 196 | 0.08

06 | 32,498 { 93493 || 13.905 [ 005 | 7566 | 41235 {015 | 11| o045 | i | 3745 | 095
W07 | 45026 | 127774 | 20.586 | 008 | 11,946 | 54,211 | G:22 | 49 | 247 | 43 | 9944 | 758
08 | 51,309 | 154644 {| 29271 | 0.10 | 13.433 | 67,220 | 0.26 7| 058 7 1553 | 066

09 | 53,395 | 161.430 || 20572 | 009 | 16104 | 69.833 025 | 70 | 424 | 69 | 10569 | 1177

10 | 69,429 | 233090 || 37,240 | 0.14 | 23.3a2 | 97,426 | 040 | 33 | 392 | 33 | 8003 | 6.5

ill | 70,558 | 190.694 || 25693 | 0.13 | 20455 | 85668 | 038 | 35| 331 | 35} 625 | 595

i12 | 71,076 [ 241135 | 23338 | 0.15 | 23,524 | 107054 | 044 6| 1.0 65| 3530 | 101

113 | 83,199 | 237,788 || 23022 | 0.16 | 21,885 | 114642 | 031 ] T03 | 8] 47071 | 197

it4 | 154,605 | 394,497 || 57519 | 033 | 34102 | 170,542 | 0.98 3| 1852 3| s3m| i1m

i15 | 161,570 § s20562 || 52033 | 0.37 | 40915 | 237,486 | 118 [ 115 | 33.66 | 115 | 30.538 | 77.51

16 | 183,484 | 589.253 || 82,799 | 04Z | 54,060 | 260,718 | 141 | 41 | 1288 | 41 | 17325 | 18.17

i17 | 185495 | 671,174 j[ 63.103 | 0.46 | 55961 | 302,893 | 155 3 1.93 3§ 2387 213

i18 | 210,613 | 618,020 || 64988 | 048 | 42340 ) 257727 | i43 | 12| 344 | 12| 6060 | 466

Qur test suite is presented in Table 1 (the first three columns).
We generated the graphs i01-i18 in our test suite from the ISPD9§
circuit benchmark swite [2]. This test suite contains newer and far
larger circuits than those in the ACM/SIGDA (or MCNC) bench-
marks. These circuits are not constraint graphs but large enough
to give an idea about the running time of our algorithm in practice.
The circuits in the ISPD98 had the direction information for their
nets. We used this information to generate directed edges and con-
vert the circuits 1o the directed graphs in our test suite. This way,
the total number of edges in our graphs equaled approximately 2.8
times the total number of nets in the original circuits.

We chose the edge weights unjform-randomly out of the interval
[-1, -3000). To generate positive cycles, we computed the maxi-
mum cycle mean of the graph, multiplied it by 4, and added it to
every edge weight. The colurnn my. in Table 1 shows the total num-
ber of positive edges resulied.

4.2 Experimental Results and Discussion

We implemented four algorithms to compare: (1) FIX, (2) the
depth-first search algorithm (DFS) [9], (3) an approximation algo-
rithrn for the feedback arc set problem (FAS) [15], and (4) POS-
CYCLE, which is explained below.

POS-CYCLE is an algorithm stmilar to FIX in that both repeat
the following two steps: {1) find a cycle and (2) make it a zero
cycle. For both algorithms, the cycle at step | is not arbitrary: FIX
finds a critical cycle, whereas POS-CYCLE finds a positive cycle,
hence, its name. To find a cycle, FIX uses YTO, one of the fastest
maximum cycle mean algorithms [1 !}, whereas POS-CYCLE uses
Tarjan’s algorithm, one of the fastest positive (or negative) cycle
detection algorithms [6).

We compared all the implemented algorithms in terms of the run-
ning time and the solution quality. The latier refers to the length of
the edge list returned. For both criteria, the smaller. the better.

The length of the edge list returned by any algorithm is trivially
bounded by m. For DFS, |L] gives the number of the back edges
(those edges that create cycles, as defined in [9]) in the input graph.
Among the algorithms, only FAS has a provably worst-case solu-
tion quality: the iength B of the edge list returned by FAS is at most
B{m,n) =m{2-nf6[15]

The experimental results are presented in Table 1. For each algo-
nithm, we give the length £ (in the number of edges} of the returned

edge list and the running time T {in seconds). In addition, for FAS,
we also give the worst-case bound B on L, and for POS-CYCLE
and FIX, we also give (in FIX’s columns only) the number m.. of
positive edges in the input graph.

The results in Table I indicate that (1} |L[FAS]| is almost half
|LIDFS)): (2) the bound on |L{FAS]| is not tight; (3) [L{FiX]| is
stightly shorter than {L|POS — CYCLE)|; (4} |L{POS - CYCLE]}|
and |L[FIX]| are three orders of magnitude (1300x) shorter than
iLIFAS]|: and (5) FIX is the slowest algorithm although its running
time is in a few seconds. .

From these observations, we conclude that DFS and FAS should
not be used at all for over-constraint resolurion because their solu-
tion quality is not satisfactory. After eliminating them, the choice
is between POS-CYCLE and FIX. In terms of the solution guality,
FIX is the best algorithm though the difference is insignificant: ex-
cept for i07 and i09, both algorithms return the same |L|; for i07
and 09, |L{FIX]| is one less than {L[POS — CYCLE]).

In terms of the running time, POS-CYCLE is almost 2x faster
than FIX although the running times of all four algorithms are al-
most negligible compared 1o the time {around 10s) to read the input
graph. For only i15 and i16, POS-CYCLE and FIX take more time
than the time it takes to read the input.

In addition to the running time, we should aiso compare POS-
CYCLE and FIX in terms of their worst-case 1ime complexity. As
proved in this paper, F1X ruas in strongly polynomial time. whereas
POS-CYCLE can run in exponential time {1j. Note that we have
not proved the worst-case time complexity of POS-CYCLE in this
paper; instead, we have extrapolated it from those of similar al-
gorithms for the minimum cost flow problem [1]. Interestingly.
although we developed FIX independently, we later realized that
similar algorithms had been developed to obtain the first strongly
polynomial time algorithm for the minimum cost flow problem [1}.

5, CONCLUSIONS

We have defined the problem of ensuring the consistency of a
system of difference constraints in terms of the problem of remov-
ing the positive cycles from the corresponding constraint graph. We
have reviewed the previous approaches (o these problems and noted
that they result in exponential time algorithms. We have then pre-
sented cur approach and algorithm and showed that the algorithm is
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correct and runs in strongly polynomial time. Finaily, we have dis-
cussed our experiments done to compare our algorithm with three
other aigorithms on very large circuit benchmarks. The experimen-
tal results show that our algorithm is very efficient in practice, and
its solution quality is the best.
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